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ABSTRACT

Precipitation trends for 1901–2010, 1951–2010, and 1981–2010 over relatively well-observed global land

regions are assessed for detectable anthropogenic influences and for consistency with historical simulations

from phase 5 of the CoupledModel Intercomparison Project (CMIP5). The CMIP5 historical all-forcing runs

are broadly consistent with the observed trend pattern (1901–2010), but with an apparent low trend bias

tendency in the simulations. Despite this bias, observed and modeled trends are statistically consistent over

59% of the analyzed area. Over 20% (9%) of the analyzed area, increased (decreased) precipitation is partly

attributable to anthropogenic forcing. These inferred human-induced changes include increases over regions of

the north-central United States, southern Canada, Europe, and southern South America and decreases over

parts of the Mediterranean region and northern tropical Africa. Trends for the shorter periods (1951–2010

and 1981–2010) do not indicate a prominent low trend bias in the models, as found for the 1901–2010 trends. An

atmosphere-only model, forced with observed sea surface temperatures and other climate forcing agents, also

underpredicts the observed precipitation increase in the Northern Hemisphere extratropics since 1901. The

CMIP5 all-forcing ensemble’s low bias in simulated trends since 1901 is a tentative finding that, if borne out in

further studies, suggests that precipitation projections using these regions and models could overestimate future

drought risk and underestimate future flooding risk, assuming all other factors equal.

1. Introduction

Precipitation changes associated with anthropogenic

climate change have the potential for great societal im-

pacts, as precipitation is a key driver of drought and

flood risk. Previous studies have documented observed

precipitation trends, including regional patterns of

trends. For example, in the IPCC Fourth Assessment

Report (AR4), trends over 1901–2005 were analyzed,

statistically significant trends identified, and time series

were shown for a number of key regions (Trenberth et al.

2007; Figs. 3.13, 3.14). In the IPCC AR5, regional trend

maps were compared for three different observational

datasets and two time periods (1901–2010, 1951–2010)

(Hartmann et al. 2013; Fig. 2.29). The observed trend

patterns were similar across the different datasets,

although they differed across time periods. However, the

ability of historical climatemodel simulations to reproduce

the observed trends in precipitation is lesswell studied, and

this issue is one of the key motivations of our study.

Precipitation projections over the twenty-first and

twenty-second centuries under the RCP8.5 climate forcing

scenarios are shown in Collins et al. (2013) (Fig. 12.22 of

IPCC AR5) and have similar general patterns to those

fromprevious IPCCassessments, particularly outsideof the

tropics. While this general consistency of modeled pre-

cipitation projections across different model generations is

suggestive of a robust physical response, more confidence

could be gained in such projections if the precipitation

trends from climate model historical simulations were also

demonstrated to be consistent with the observed trends.

Further motivating our study, future precipitation pro-

jections are a critical issue for future societal impacts, in-

cluding drought risk. For example, recent studies conclude

that for historical changes in California (Cheng et al. 2016)

or future greenhouse-gas-induced warming (Berg et al.

2017; Roderick et al. 2015), changes in drought risk, as

inferred from deep or vertically integrated soil moisture

changes (Berg et al. 2017; Cheng et al. 2016) and changes
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inmeteorological aridity (Roderick et al. 2015), are closely

linked to changes in precipitation.

Previous studies have concluded that some aspects of

observed historical trends of mean (seasonal or annual)

precipitation or related variables (ocean near-surface

salinity) can be attributed to anthropogenic forcing. A

recent review of detection and attribution studies for

regional precipitation changes (Sarojini et al. 2016)

outlines some of the observational and modeling chal-

lenges in this research area. Despite these challenges,

some examples of mean precipitation metrics with at-

tributable human influence include annual zonal mean

precipitation changes over land (Zhang et al. 2007),

changes in the tropical marine water cycle (Terray et al.

2012), and midlatitude drying and high-latitude moist-

ening in the extratropical Southern Hemisphere sum-

mer (Fyfe et al. 2012). Examples of regional increases of

precipitation that are attributable in part to human in-

fluence include over northern high latitudes (Min et al.

2008; Wan et al. 2015), southern subtropics in summer

due to polar ozone depletion (Kang et al. 2011), south-

eastern South America during summertime due to in-

creased greenhouse gases (Zhang et al. 2016), and the

Sahel region since the 1980s, also due to increased

greenhouse gases (Dong and Sutton 2015). Examples of

regional decreases in precipitation that have been at-

tributed to human influence include over southern and

southwest Australia (Delworth and Zeng 2014), the

Mediterranean region during wintertime (Hoerling

et al. 2012), and the Sahel region from the 1950s to the

1980s (Held et al. 2005). Other studies have reported

evidence for external influence on precipitation trends,

and although these studies did not attribute the changes

specifically to anthropogenic influence, in some cases an

anthropogenic influence is suggested by the results.

Examples of such studies include seasonal zonal-

average land precipitation (Noake et al. 2012; Polson

et al. 2013), zonal-average (land and ocean) pre-

cipitation (Marvel and Bonfils 2013), precipitation in-

creases over parts of the United States (Knutson et al.

2014; Anderson et al. 2015), and possibly the regions

with significant linear trends on observed precipitation

trend maps (Hartmann et al. 2013). The above studies

were generally based on comparison of observations and

climate model simulations, with the exception of the

statistical trend analyses of Hartmann et al. (2013) and

Anderson et al. (2015), which were based on observa-

tions alone. In our study, we do not address the issue of

changes in extreme precipitation, which has been ad-

dressed in a number of previous studies (e.g., Min et al.

2011; Bindoff et al. 2014; Westra et al. 2013; Zhang et al.

2013; Dittus et al. 2016; Fischer and Knutti 2016; Taylor

et al. 2017). More physically comprehensive alternative

metrics of land-region wetting or drying, compared to

precipitation alone, have been assessed for observations

(Greve et al. 2014) but also are not considered here.

Comparatively less has been done to assess the degree

to which historical regional precipitation trends are

consistent with climate model historical forcing simula-

tions. Examples include van Oldenborgh et al. (2013)

and Bhend and Whetton (2013), who assessed the con-

sistency of CMIP5 model historical forcing runs versus

observed regional precipitation trends since 1951. Van

Oldenborgh et al. conclude that the model-simulated

precipitation trends are overconfident (i.e., in some

sense inconsistent) with regard to observations. Kumar

et al. (2013) find relatively low (,0.25) spatial correla-

tions between CMIP5 simulated and observed pre-

cipitation trends since 1930. The successful simulation of

past or future regional precipitation trends is likely to be

particularly challenging for climate models, particularly

since precipitation changes will depend on small-scale

processes that typically must be parameterized in cli-

mate models, and, as a further complication, pre-

cipitation changes interact with the atmospheric

circulation (Jakob 2010, 2014). Differences between

current climate models in responses of large-scale pre-

cipitation patterns to even simplified uniform ocean

warming can be particularly striking in the tropics,

where moist convective parameterizations are particu-

larly important for the coupling of water and circulation

(Stevens and Bony 2013). Given these modeling chal-

lenges for precipitation and its coupling to the circula-

tion, one should not necessarily expect the modeled

responses of regional precipitation patterns to external

forcings, such as increased greenhouse gases, to be re-

liable or robust. Our consistency tests can help objec-

tively assess how well the CMIP5 models perform in

reproducing historical regional precipitation trends.

Our study extends both the detection/attribution and

model–observation consistency lines of research by

systematically comparing, at the gridpoint scale, the

observed precipitation trends over land regions, pri-

marily from the GPCC dataset, to an ensemble of cli-

mate model historical forcing simulations (see section 2)

from the CMIP5 archive (Taylor et al. 2012). We focus

on trends on three different trend time scales, up to the

centennial scale (1901–2010), and over limited land re-

gions. Through our methodology, we are able to cate-

gorize observed trends into classes related to detection,

consistency, and attributable anthropogenic influence,

as outlined in the results section (section 3). Novel as-

pects of our work include the detection andmodel-based

attribution of anthropogenic influence on precipitation

trends for several additional land regions around the

globe compared to previous studies, and an assessment
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of the model–observation consistency for precipitation

trends in land regions (at the gridpoint scale and for

zonal averages) for the three time scales.

We describe our methodology in section 2, present

analysis results including trend assessments and sensi-

tivity tests in section 3, consider the possible role of

observed data quality issues in section 4, and present

discussion and our main conclusions in section 5.

2. Methodology

In this section, we provide details of our methodology,

including observed and model datasets used, and some

sensitivity tests. In the appendix, we list the CMIP5

model sets used, and provide details of data masking and

the methods used for transforming precipitation data

into a standardized index form for sensitivity tests. In the

study, we use the linear trend as the general metric to

describe long-term changes in precipitation (treating

observed and modeled data in the same manner). Other

types of systematic changes over time, such as changes in

means between different epochs, changes in pre-

cipitation extremes (Min et al. 2011; Westra et al. 2013;

Zhang et al. 2013), or abrupt changes in precipitation

(Narisma et al. 2007) could be explored in future

extensions.

a. Observational datasets

The primary observational dataset used for the

analysis was the Global Precipitation Climatology

Centre (GPCC) V6monthly dataset on a 2.58 3 2.58 grid
(Becker et al. 2013), file precip.mon.total.2.532.5.v6.nc

downloaded March 2015 from https://www.esrl.noaa.

gov/psd/data/gridded/data.gpcc.html. As a sensitivity

test for the observations, we also present some trend

assessment results using the Climatic Research Unit

CRU_ts3.24.01 monthly precipitation dataset on a

0.58 3 0.58 grid (https://crudata.uea.ac.uk/cru/data/hrg/;

updated from Harris et al. 2014) and the Global

Historical Climatology Network (GHCN) version

2monthly precipitation dataset (Vose et al. 1992; https://

www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-

products/).

b. CMIP5 models, experiments, and multimodel
trend distributions

The CMIP5 multimodel ensemble used for the main

anthropogenic influence assessments in our study com-

prises 10 individual models (see the appendix). The set

of individual model runs available to us for each of these

10 models includes 1) a preindustrial control run, 2) at

least one all-forcing ensemble member extending to

2010 (with ‘‘all-forcing’’ referring to both anthropogenic

and natural forcing agents; see Knutson et al. 2013), and

3) at least one ‘‘natural-forcing-only’’ ensemblemember

extending to 2010. The all-forcing runs include both

anthropogenic and natural forcing agents and thus in-

corporate the most comprehensive set of external forc-

ings among the CMIP5 simulations. They represent the

most comprehensive effort by the modeling groups to

simulate the response of the climate system to a set of

known external forcing agents believed to be of primary

importance for climate change over the historical pe-

riod.We estimate the anthropogenic forced response for

each year as the difference between the models’ en-

semble mean from the all-forcing experiments and the

ensemble mean from the natural-forcing experiments.

For the case of multimodel ensembles, the ensemble

means of the individual models are first created and then

averaged to create the multimodel ensemble, which re-

sults in an equal weighting for each individual model

included in the multimodel ensemble regardless of the

number of ensemble members available for each indi-

vidual model. The natural-forcing runs were forced by

estimated past changes in solar irradiance and volcanic

aerosol loading. For some of the results presented in this

study, we used a larger sample of 36 CMIP5 models (see

the appendix), as these particular analyses did not re-

quire natural-forcing-only runs extending to 2010, and

so we could include the full sample of all-forcingmodels.

The CMIP5 model archive contains simulations con-

tributed from many different modeling groups. This

requires that we adopt a methodology for combining

information from different models in our assessment of

the observed trends. Our standard or default multi-

model assessment combines the information from a set

of models into a single distribution of trends for all

forcing and another single distribution for the natural

forcing, where these single distributions have the aver-

age characteristics of the group ofmodels they represent,

as discussed in detail below. As a sensitivity test, this

standard approach is later modified as we assess either

individual models or as we combine multiple models in

an alternative way (described below).

The multimodel ensemble trend distributions for our

standard (default) tests in this study are created by first

developing trend distributions—combining ensemble

means of forced runs with variability from long control

runs—for each of the individual models separately and

then averaging those to create a single average distri-

bution with the average properties (mean, variance, 5th/

95th percentiles) of the trends from the available

models. This differs from the approach of Knutson et al.

(2013), who analyzed the aggregate multimodel distri-

bution of trends obtained by combining the distributions

of trends from the individual models into a grand
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aggregate distribution and computing the mean and 5th/

95th percentiles of that grand multimodel distribution.

The aggregate approach generally produces a wider

distribution than our standard (average distribution)

approach, as it includes some spread due to differences

in mean trend behavior across the models as well as due

to the internal variability. The aggregate internal vari-

ability contribution to the spread also tends to be

influenced strongly by the more variable models. Sen-

sitivity tests using the aggregated distribution approach

of Knutson et al. (2013) are presented in the online

supplemental material.

c. Other sensitivity tests

Among our sensitivity tests, we compute and assess

linear trends for a standardized precipitation index

(SPI), where modeled and observed monthly pre-

cipitation anomalies at each grid point have been

transformed into a standardized index having approxi-

mately normal distribution and unit variance (described

above). This sensitivity test reduces the influence of non-

Gaussian behavior and also controls for model biases in

simulated variability, since the transformed observed

andmodeled time series by definition have unit variance

at each grid point. Additional sensitivity tests, described

briefly in section 3, were performed to examine seasonal

(vs. annual) trends and to assess individual models in-

dependently rather than combined as a group. We also

compare trends across three different observed datasets.

As an alternative analysis approach that is more focused

on extreme monthly means, we analyze time series of

the percent of global analyzed area with monthly pre-

cipitation index values above or below certain statistical

threshold values for models and observations (see the

supplemental material).

3. Results

a. Evaluation of modeled precipitation variability

Simulated internal variability in climate models is an

important component of the trend assessment tests in

our study. The simulated low-frequency (.10 yr) in-

ternal variability of theCMIP5models, as obtained from

long control (unforced) integrations, is compared to an

observed internal variability estimate in Fig. 1. The ob-

served internal variability estimate is obtained by sub-

tracting the multimodel ensemble mean of the

all-forcing experiments from observations to create an

estimated internal variability residual time series. This

method assumes that the forced variability signal from

the all-forcing experiments can be used as the estimate

of the forced variability in the real world. The ensemble

average and the average internal variability maps are

based on all 36 CMIP5 models. Overall, the comparison

shows reasonable agreement between the modeled and

observed variability maps. According to the multimodel

average variability difference map (Fig. 1c), most of the

nongray (adequate data) portions of themap have a blue

shading, indicating that the modeled internal decadal

variability tends to be larger than the observed (residual)

FIG. 1. Comparison of estimated low-frequency internal vari-

ability from observations andmodels. (a) Observed estimate based

on the standard deviation of residuals formed by subtracting the

CMIP5 ensemble mean all-forcing simulation from observations.

(b) Ensemble average of low-frequency standard deviations from

the 36 CMIP5 models. (c) CMIP5 ensemble standard deviation

minus observed estimate [(b) 2 (a)]. Low-frequency variations

based on low-pass filtered (.10 variability) data. Unit: mmyr21.
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internal variability estimate. In these blue-shaded areas,

the apparent model bias would tend to make our trend

detection tests overly conservative while our consistency

tests (observations versus all-forcing simulations) would

be underconservative (too easy to achieve consistency).

We judge the simulated internal variability overall to be

sufficient for the purposes of the trend assessments in

our study. We assess normalized (SPI) data as a sensi-

tivity test later in this report (removing the influence on

trends of variance differences between models and ob-

servations), and our trend detection results can also be

compared with previous studies (e.g., Hartmann et al.

2013) that used different methods. Nonetheless, a caveat

of our study is that the true observed level of internally

generated low-frequency variability is not perfectly

known, as our estimate is based on a limited sample in

time and assumes that themodels’ estimate of the forced

response is correct. In addition, discrepancies between

the model simulated and observed variability estimates

are apparent in Fig. 1. Standard deviation difference

maps analogous to that in Fig. 1c but for each individual

model are contained in the supplemental material.

b. Trend assessments

Our trend assessment classifies observed trends into a

set of categories, defined in this section. The category

definitions are applied at each grid point that has suffi-

cient data coverage for trend analysis (see the appen-

dix). We then plot maps showing the assessed category

for each grid point for a given trend period of interest.

Limited spatial/time coverage of data has been shown to

have an important influence on precipitation trends at

the zonalmean scale (Sarojini et al. 2012). Therefore, for

consistency, we masked out the model data for times/

locations where observed data are not available.

The defined categories describe the relationship be-

tween observed and modeled trends in our basic as-

sessment figures. The categories are schematically

illustrated in Fig. 2 using hypothetical distributions of

trends from the all-forcing and natural-forcing experi-

ments. Although more categories are possible, here we

use just nine categories (24, 23, . . . 14). Our nine cat-

egories are not designed to cover all possibilities, and a

small percent of cases were found to not fit into any of

the nine categories and for simplicity are not plotted.

We first consider whether detectable trends in regional

precipitation are identifiable in the observations

(categories23,22,21,11,12,13). Detectable trends

are defined here as those that are statistically distinct

from (i.e., outside the 5th to 95th percentile range of)

large samples of simulated trends due to natural vari-

ability, with the latter obtained by combining internal

variability trends from CMIP5 control runs with the

ensemble mean trends from natural-forcing-only ex-

periments. For detection, we also require that the ob-

served trend have the same sign as the ensemble mean

trend from the CMIP5 all-forcing runs. This definition of

detection parallels that of detection/attribution studies

using regression/pattern-based methods, where detection

is claimed when the regression scale factor significantly

exceeds zero (i.e., the model has the correct sign of

change, among other requirements). Our tests assume

that the models’ preindustrial control runs realistically

simulate internal climate variability, even when applied to

the late-twentieth-century climate. Observed trends that

are classified as nondetectable thus include both weak

trends (category 0) as well as strong observed wetting or

drying trends for which the wrong sign of change is sim-

ulated in the all-forcing runs (categories 24, 14).

Detectable consistent anthropogenic influence

(categories 12, 22) is inferred where observed changes

are both distinct from modeled natural variability

(simulated internal variability combined with the re-

sponse to external natural forcing) and are also consis-

tent with historical all-forcing experiments that include

both anthropogenic and natural forcing agents. Note

that we estimate the anthropogenic forced response as

the difference between the all-forcing and natural-

forcing responses. The case of detectable but inconsistent

inferred anthropogenic influence (categories 13, 23) oc-

curs where a detectable observed change is found, and the

anthropogenic forcing response is of the correct sign, but

the observed change is nonetheless greater than the 95th

percentile (for positive trend) or less than the 5th per-

centile (negative trend) of the trend distribution from the

combined all-forcing and control experiments. Note that

for attribution categories (13, 23), we also require that

the observed trend be closer to the all-forcing ensemble

mean trend than to the natural-forcing ensemble

mean trend.

As part of our tests, we assess the consistency between

observed trends and those from the CMIP5 all-forcing

historical runs, apart from the issue of climate change

detection; consistent trends are identified by stippling in

our assessment maps. We define consistency as simply

the case where simulated (all forcing) trends are con-

sistent with observed trends, regardless of the magni-

tude or statistical significance of the observed (or

modeled) trends. It is possible for an observed trend to

be consistent with both the all-forcing and the natural-

forcing experiments (i.e., where trends are weak and

nondetectable but nonetheless consistent with all-

forcing experiments). These cases are identified in our

assessment maps by gray shading with white stippling.

Among the inconsistent cases, we also identify cases

of relatively strong (i.e., distinct from simulated natural

15 JUNE 2018 KNUTSON AND ZENG 4621

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/30/21 01:48 PM UTC



variability) trends in observations which are inconsistent

with the all-forcing experiments by being either 1) sig-

nificantly weaker than like-signed changes in the all-

forcing runs but still detectable (categories 11, 21), or

2) having the opposite sign of observed trend compared

to the ensemble mean of the all-forcing runs

(categories 14, 24). Categories 11 and 21 are quite

rare in our analyses, as these cases require, among other

things, that the all-forcing trends be relatively well

separated from the natural-forcing trend distribution

and that the observed trend be much weaker than the

all-forcing trend but yet still strong enough to be dis-

tinguished from the natural-forcing distribution.

Categories24 and14, which identify cases of particularly

FIG. 2. Schematic diagram illustrating different categories of trend assessment result for

hypothetical all-forcing and natural-forcing distributions. The dashed vertical lines are 5th

and 95th percentiles of the trend distributions for all-forcing (orange) and natural-forcing

(blue) distributions. Axes are green; the zero trend line vertical axis (green) is labeled ‘‘0’’.

The category labels indicate the assessment category that would apply if the observed trend

fell in the indicated ranges marked by the two-sided red arrows.
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serious (wrong sign) model–observation inconsistency,

are more common in our results.

1) 1901–2010 TRENDS

Observed trend maps and assessments for annual

mean precipitation over 1901–2010 (Fig. 3a) show a

preponderance of increasing (wetting) trends, especially

in the extratropics. While there is some broad-scale re-

semblance of the CMIP5 all-forcing ensemble mean

trend pattern (Fig. 3b) to the observed trend pattern

(Fig. 3a), the modeled pattern clearly shows greater

coverage and prominence of decreasing (drying) trends

than observations. The all-forcing ensemble and ob-

served trends are statistically consistent (Fig. 3c) over

58% of area analyzed (white stippling on various

colors). This includes some regions (gray shading

with white stippling) where there are only weak ob-

served trends that are nonetheless consistent with

the all-forcing runs. The nonstippled color-shaded or

nonstippled gray regions all denote significant dis-

crepancies (42%). The summary assessment categories

in Fig. 3c, as discussed above, indicate detectable ob-

served trends over 29% of the analyzed global area

(categories11,12,13,21,22,23). The areaswe identify

as having trends outside of the 5th to 95th percentile of

the natural forcing and control runs (nongray shaded

regions) are similar to those regions identified in ear-

lier studies—but using different methods—as having

FIG. 3. Assessment of observed (GPCC) precipitation trends over 1901–2010 based on 10 CMIP5 models. (a) Observed and (b) CMIP5

multimodel ensemble precipitation trends in units of mmyr21 decade21. (c) Model-based summary assessment of the observed trend at

each grid point having sufficient data coverage. Nine assessment categories are defined (see color scale and text for details). The percent of

analyzed area classified in each category is listed in parentheses. Grid points in which the observed trend is consistent with (i.e., within the

5th to 95th percentile of) the CMIP5 all-forcing historical run ensemble trend distribution are identified with white stippling. Solid white

regions have too sparse data coverage for the trend analysis. Gray regions in (c) have no detectable observed trend. Other color-shaded

regions in (c) have various types of significant observed trends (some detectable), which are interpreted as summarized in the

category legend.
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statistically significant trends based on observed data

alone (e.g., Hartmann et al. 2013). Observed detectable

drying trends (warm colors, categories 21, 22, 23 in

Fig. 3c) are found over 9% of the analyzed area, but

only 2% of the area has both detectable and consistent

drying trends (category 22), compared with the all-

forcing ensemble. In 7% of the area, the detectable

drying is significantly stronger in the observations than

in the models (category 23). We therefore infer that

there is attributable anthropogenic drying over 9%

(7%1 2%) of the analyzed area, including parts of the

Mediterranean region, northern tropical Africa, small

regions of Japan, the Maritime Continent, and south-

west Australia, plus a few other scattered locations

around the globe.

Detectable wetting (increases) trends that are at least

partially attributable to anthropogenic forcing are found

over 20% of the area, that is, 4% that is consistent

(category 12) and 16% where the wetting trend is signif-

icantly larger than the all-forcing models (category 13).

These areas with at least some inferred detectable an-

thropogenic wetting trends (categories 12, 13) include

regions of northern Europe, eastern Europe/westernAsia,

parts of the central and northern coterminous United

States and southern Canada, and parts of southern South

America. Some smaller regions of inferred anthropogenic

increase are also seen near Iceland, in Australia, and over

scattered regions of the tropics,Asia and northernCanada.

The inferred human-induced increases (categories

12, 13) over southern South America are consistent

with Zhang et al.’s (2016) finding for summertime

(November–April) precipitation there; our 3-month

seasonal attribution maps (supplemental material) sug-

gest that attributable human influence is also present in

the December–February (DJF), March–May (MAM),

and September–November (SON) seasonal pre-

cipitation in that general region. Detectable anthropo-

genic precipitation decreases since the early 1900s have

been previously reported over the Mediterranean

region during winter (Hoerling et al. 2012) and over

extreme southwestern Australia during March–August

(Delworth andZeng 2014), generally consistent with our

(category 22, 23) results. Our analysis also identifies a

number of regions (category 14, green shading, 9% of

area) with strong observed wetting, but where themodel

ensemble simulates the incorrect (drying) sign of change

in the all-forcing runs. These nondetectable regions with

striking differences between strong observed wetting

and modeled drying trends notably include parts of the

south central United States, small regions of India,

northern Australia, and the Korean peninsula, as well as

scattered locations in southern Africa, Europe, and

southwestern Canada.

Seasonal versions of the precipitation assessment map

in Fig. 3c are presented in the supplemental material.

Notable features in these include pronounced anthro-

pogenic increasing trends (category 12, 13) over parts

of Europe/western Asia in various seasons excepting

June–August (JJA), over parts of southern South

America in all seasons except JJA, and over the eastern

United States and Great Lakes region in SON.

2) 1951–2010 TRENDS

Annual precipitation trends for 1951–2010 (Fig. 4)

represent a compromise between using a record as long

as possible to better detect long-term trends versus

concerns about data homogeneity in the earlier part of

the record. A smaller percentage area with detectable

trends (16%; categories 23, 22, 12, 13) is indicated

than for 1901–2010 (29%). The area with observed

trends consistent with the models (white stippling) in-

creases to 72% for 1951–2010, compared with 58% for

1901–2010. Detectable anthropogenic increases (10%;

categories 12, 13) are prominently indicated over re-

gions of northern Europe, central Asia, the North

American Great Lakes region, northern Australia, and

southern South America. The high northern latitude

moistening signal is broadly consistent with previous

studies (Min et al. 2008; Wan et al. 2015) attributing

northern high-latitude moistening trends over this pe-

riod partly to anthropogenic influence. There are also

some regions of detectable anthropogenic drying (6% in

total; categories 22, 23), including over extreme west-

ern Africa and the Mediterranean region. Finally, there

is a substantial area (6%; category 24) with significant

drying trends, but where the CMIP5 all-forcing ensem-

ble simulates the wrong sign of change (wetting)—

notably, parts of tropical Africa/Sahel, but also scattered

regions of Asia and other continents. The models sim-

ulate an observed drying trend in extreme western Af-

rica, although it is weaker than observed; the observed

drying in extreme western Africa is thus attributed in

part to anthropogenic forcing. However, the CMIP5

multimodel ensemble simulates the wrong sign of

change in northern tropical Africa, including in much of

the Sahel region (prominent observed regional drying;

category24), which will be discussed more later. Other

problem areas for models include the south central

United States (similar to the 1901–2010 trends case) and

parts of tropical South America, which are assessed

(category14) as having significant wetting trends in the

observations, in contrast to simulated drying trend in the

models—similar to inconsistencies seen for the 1901–

2010 trends. Seasonal assessment maps (supplemental

material) indicate that models have difficulty simulating

observed drying trends (category 24) during winter
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over northeast Asia and parts of Canada, but also

indicate attributable anthropogenic drying (categories

22, 23) over extreme eastern Asia in September through

November.

3) 1981–2010 TRENDS

Observed annual precipitation trends over the recent

30-yr period 1981–2010 (Fig. 5) have generally stronger

magnitudes (inmmyr21 decade21) than observed trends

for 1901–2010 or 1951–2010. This is as expected since

trends over a shorter period have stronger potential for

occurrence of pronounced temporary trends due to in-

ternal variability alone. Only 9% of the analyzed area

has detectable and attributable anthropogenic influence

(categories 23, 22,12,13), which represents less than

one-third of the fractional areal coverage of such trends

for 1901–2010 (29%). Overall, the fraction of global

analyzed land area with trends consistent with CMIP5

models (white stippling) is much larger (77%) than that

for 1901–2010 (58%). Eight percent of the analyzed area

has attributable anthropogenic increases (categories

12, 13), including parts of eastern Europe, northern

Asia, northern Australia/Maritime Continent, and

tropical Africa. There are almost no regions with at-

tributable drying trends (categories 22, 23), but there

are some regions with detectable observed drying trend

where the CMIP5 ensemble simulates the wrong sign of

change (wetting), including over parts of the Mediter-

ranean, the Middle East, South Asia, East Asia, and

southern South America (category 24; 6% of analyzed

area in total). A smaller total area with significant

wetting but where the models simulate a drying

(category 14; 3% of area) occurs mainly over extreme

western Africa, the Caribbean, and parts of Amazonia.

Twominor regions of possible detectable anthropogenic

drying (category 23) were inferred over the south-

western United States/Mexico and central South

America; detectable drying was not found in these re-

gions in the longer-term trend analyses. The south-

western U.S. drying detection, while a potentially

FIG. 4. As in Fig. 3, but for assessment of observed (GPCC) precipitation trends over 1951–2010.
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important result, should be treated with caution as the

detection occurs for a relatively small and isolated re-

gion, surrounded by a large region of nondetection.

Seasonal trend assessment maps (supplemental mate-

rial) suggest attributable anthropogenic wetting

(categories12,13) over northernAustralia and parts of

eastern Asia inDecember–February and some scattered

regions/seasons with attributable anthropogenic drying

(categories 22, 23) in low latitudes.

In general, we find that for shorter time periods, the

detectability of trends decreases while the consistency of

observed trends with the all-forcing trend distributions

increases. We interpret this general behavior as follows.

We expect it to be easier for an observed trend to

emerge as significant, compared to background internal

variability, for a longer record, as the trend is then

extending over multiple ‘‘cycles’’ of the internal vari-

ability. The increased consistency for shorter periods

occurs as the trend components, which can be a source of

discrepancy between models and observations, become

less important relative to the internal variability. Es-

sentially, for very short periods, the models mainly need

an adequate simulation of the internal variability in or-

der to be consistent with observations. As discussed

previously, excessive simulated internal variability, if

present, also leads to a high bias in degree of consistency

between historical run trends and observations because

the wider the modeled distribution of trends (larger in-

ternal variability), the easier it is for an observed trend

to lie within the modeled all-forcing distribution (as il-

lustrated by Fig. 2, for example).

4) INDEPENDENT ASSESSMENT OF INDIVIDUAL

MODELS

Our trend assessment has some dependence on as-

sumptions in the methods used. The assumption of

assessing the 10 models combined together as an en-

semble is relaxed for Fig. 6, which depicts, at each grid

point, the number of models out of 10 where an attrib-

utable anthropogenic increase or decrease is inferred

FIG. 5. As in Fig. 3, but for assessment of observed precipitation trends over 1981–2010.
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FIG. 6. Number of CMIP5 models out of 10 that are assessed as having a detectable and

attributable anthropogenic wetting or drying tendency. The observed (GPCC) precipitation

trends for (a) 1901–2010, (b) 1951–2010, and (c) 1981–2010 are analyzed. Detectable and at-

tributable anthropogenic influence refers to categories 12 and13 for increasing precipitation

and categories 22 and 23 for decreasing precipitation (see text).
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based on an independent assessment of each individual

model. The results overall are generally consistent with

our ensemble assessment results (Figs. 3–5), although

the 1951–2010 trend assessment for the individual

models indicates that some of the problem features

identified in the ensemble results (e.g., incorrect sign of

simulated precipitation change over parts of northern

tropical Africa and the south central United States) are

not present in at least some of the 10 individual models

analyzed. For the 1901–2010 trends, the summary cate-

gory assessment (analogous to Fig. 3c) is shown for each

of the 10 individual CMIP5 models in Fig. 7. Here one

can compare the individual models in how they simulate

the observed trends over the central United States,

Europe, and tropical Africa, for example. The percent of

area with detectable and attributable trends ranges from

18% to 29%, compared with the average model distri-

bution result (Fig. 3c) of 29%. Similarly, the percent of

area consistent with observed trends ranges from 45% to

57% compared with the average model distribution re-

sult of 58%. Notable results include inconsistencies be-

tween some individual models and observations

(typically where a model simulates drying while obser-

vations show significant wetting) with examples over

Europe, the United States, Australia, and India. Trend

maps for individual models (1901–2010 and 1951–2010

trend periods) are contained in the supplemental

material.

5) SENSITIVITY TESTS

The trend assessment results in Fig. 3 for 1901–2010

trends are based on the GPCC dataset. Here we present

an analysis of comparable results using an alternative

dataset, the Climatic Research Unit CRU_ts3.24.01

monthly precipitation dataset, to explore the robustness

of our trend assessment to the use of a different observed

dataset. Figure 8 shows the CRU version of the trend

assessment shown for GPCC data in Fig. 3. The broad-

scale findings are similar, with both datasets having much

stronger wetting trends in the extratropics than modeled

in the CMIP5 all-forcing runs. Although the areas in-

cluded in the analysis are similar but not identical, as a

first comparison we compare the fraction of areas for

various assessment categories. The percent area where

modeled trends are consistent with observed trends is

62% for CRU, compared with 58% for GPCC. The CRU

data have 23% of area categorized as detectable and at-

tributable wetting trends (categories 12, 13) compared

with 20% for GPCC. For detectable and attributable

drying trends (categories 22, 23), these percentages are

7% for CRU comparedwith 9% forGPCC. These results

suggest that our main findings are relatively robust to the

choice of GPCC versus CRU observed data.

Additional sensitivity tests in the supplemental ma-

terial related to Figs. 3–5 show the following: 1) Similar

detection and attribution results are obtained using 36

models, although in that case we are comparing ob-

served trends with the all-forcing ensemble means and

control runs, but not to natural-forcing runs, so the at-

tribution is to external forcing only. 2)Usingmultimodel

distributions of all-forcing and natural-forcing trends

obtained by aggregating across the 10 models, instead of

using distributions having the average characteristics of

the 10 models, results in wider modeled trend distribu-

tions; this then results in less area with detectable

changes but also less area with inconsistency between

the all-forcing distribution and observations. 3) Assess-

ment results for Standardized Precipitation Index trends

are similar to those for precipitation trends, suggesting

that effects of non-Gaussian behavior and any model

biases in simulated precipitation variability have rela-

tively minor impact on our overall results. The temporal

behavior of precipitation monthly extremes is examined

by plotting the time evolution of the percent of area

where certain low or high SPI monthly thresholds are

exceeded (see the supplemental material). That analysis

finds little evidence that the monthly SPI dry extremes

are becoming more prevalent at the global land scale,

although there may be some increasing tendency in SPI

wet extreme months.

c. Zonal mean trend comparisons

The zonal average of 1901–2010 trends in annual

mean precipitation and SPI (Figs. 9a and 9e, re-

spectively) reflects the model versus observed differ-

ences seen in the earlier trend map assessments. The

observed zonal means for both precipitation and SPI are

generallymore positive than themultimodel (36models;

see section 2) ensemble mean, especially outside of the

tropics, and are on the outer edge of the 36-model dis-

tribution of individual model all-forcing ensemble

members. The observed zonal mean trends are positive

(wetting trends) for most Southern Hemisphere lati-

tudes and poleward of about 408N, whereas modeled

zonal mean trends over these latitude zones are much

more evenly divided between drying trends (from 308S
to 408N) and wetting trends (poleward of about 408N).

Zonalmean trends from the natural forcing-only CMIP5

experiments have only small magnitudes compared to

observations or the all-forcing runs. Seasonal versions of

the 1901–2010 zonal average trend plots are presented in

the supplemental material. These show that the appar-

ent multimodel bias of underpredicting the observed

wetting trends in the extratropics is most pronounced for

the fall season (SON) in the Northern Hemisphere and

the spring and summer (SON and DJF) in the Southern
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FIG. 7. Summary trend assessment for 1901–2010 precipitation trends as in Fig. 3c, but for each of 10

individual CMIP5 models. See legend of Fig. 3c and text for category (color) definitions.
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Hemisphere. The seasonal trend biases (1901–2010) are

relatively more apparent for SPI trends than for

precipitation trends. Zonal-mean annual-mean precipitation

trends for 1951–2010 (Fig. 9b) do not indicate as

systematic a low bias for models compared to observa-

tions as for the 1901–2010 trends, and show a larger

spread of trends across the 36 models, as expected for

the shorter trend period (note difference in vertical

axis scale).

Since a low bias of CMIP5 historical run precipitation

and SPI trends over 1901–2010, compared to observed

trends, would be an important finding, some further

exploration of this tentative finding is warranted. One

approach is to attempt to reconcile the model–

observation inconsistency by running a more observa-

tionally constrainedmodel (e.g., specifying the observed

time history of SSTs) to see if such a constrained model

can better reproduce the observed precipitation trends.

Therefore, we performed such an observationally

constrained set of historical simulations using theGFDL

CM3 model’s atmospheric component (AM3) forced

with observed SST and sea ice distributions over ocean

regions, and also incorporating the same historical cli-

mate forcing agents as the all-forcing simulations (i.e.,

AMIP-type forced experiments). The zonal-mean

ensemble-mean precipitation trend from these AM3

model runs (thick blue in Fig. 9c), is based on four en-

semble members with each showing similar changes

(thin blue curves). These results do not demonstrate

appreciably closer agreement between model and ob-

servations in the extratropics than the comparable

GFDL CM3 all-forcing ensemble mean (red curves).

Also, both AM3 and CM3 model experiments notably

fail to reproduce observed zonal mean trends over lower

latitudes (58S–308N). In summary, our more constrained

specified SST simulations do not support the idea that

limitations in all-forcing simulations of the historical

patterns of SST change are the main cause of a low bias

0o

FIG. 8. As in Fig. 3, but assessment of observed precipitation trends (1901–2010) based on CRU observations rather than GPCC

observations.
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in historical run extratropical precipitation trends over

the past century.

Another possible explanation for the apparent low

(dry) bias of CMIP5 models in their century-scale

historical trends over land regions is that data problems

and/or observational inhomogeneities may have created

spurious observed trends; this will be discussed in the

following section.

FIG. 9. Zonal averages of trends in observed and modeled precipitationmetrics for 1901–2010 [in (a) and (c)–(f)]

and 1951–2010 [in (b)]. (a),(b) Precipitation trends averaged over grid points with adequate data coverage for 1901–

2010 and 1951–2010, respectively. Black curves are observed trends fromGPCC data; red (blue) curves are CMIP5

multimodel mean all-forcing (natural forcing) trends, computed as the mean across the 36 (10) CMIP5 models of

the ensemble means of the individual models (see section 2); and orange curves are individual all-forcing experi-

ment ensemble members. (c) GPCC observed (black curve) vs GFDL CM3 all-forcing (red curves) and GFDL

AM3 specified SST (blue curves) experiment trends; ensemblemeans are the thicker curves, and thinner curves are

the 5 (4) CM3 (AM3) individual ensemble members using the GFDL CM3 coupled model or GFDL AM3 at-

mospheric model (section 2). (d) Observed precipitation trend comparison (1901–2010) based on GPCC (black),

CRU_ts3.24 (red), or GHCN (blue) data. Unit in (a)–(d) is mm yr21 decade21. (e),(f) As in (a),(d), but for stan-

dardized precipitation index (SPI) trends (see the appendix). Unit: decade21 3 1000.
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4. Data quality considerations

A principal result from our analysis of century-scale

precipitation trends (1901–2010) is that observations

have a greater increasing precipitation tendency than

CMIP5 historical runs, particularly over a number of

extratropical land regions having adequate observa-

tional coverage over the period (Figs. 3, 8, 9). This raises

the possibility that CMIP5 modeled historical trends are

systematically biased dry in these regions, which could

have implications for future precipitation projections

using these models. However, another possible expla-

nation for the apparent dry trend bias of CMIP5 models

is that data problems/observational inhomogeneities

may have created spurious observed trends at the cen-

tury scale. Owing to the potential importance of our

biased trend finding, here we present addition discussion

of data quality issues for the observed precipitation

datasets used in this study.

We first assess whether the strong positive extra-

tropical trends in the GPCC dataset are found in other

observed precipitation datasets. While this was already

indicated to be the case for the CRU observed data

(Fig. 8), in Fig. 9d we compare the observed zonal means

of the century-scale precipitation trends (1901–2010) of

three observational datasets (GPCC, CRU, and GHCN;

see section 2). The comparison shows that there are some

discrepancies between datasets in this trend metric, es-

pecially in the tropics, where different spatial coverage is

available in the different datasets (not shown). However,

for the extratropics (poleward of about 308 latitude in

both hemispheres) the general features of the zonal mean

trends are very similar across all three observed datasets.

Comparison of observed SPI trends (1901–2010) for the

two observed datasets that have available climatologies

(GPCC and CRU), as shown in Fig. 9f, indicates a result

with somewhat better agreement between these datasets

than for precipitation, even in the tropics.

Another aspect of our results that lends support to the

notion of an extratropical dry trend bias in the CMIP5

models is the degree of spatial coherence of the 1901–

2010 precipitation trends assessment shown in Figs. 3c

and 8c, includingwidely separated isolated grid boxes that

also show similar biases. If data inhomogeneities were the

primary cause of model–observation disagreement on

trends, we might expect to see a less spatially coherent

pattern of these features.

Among the caveats to our finding is that the reliability

of precipitation data for trend analysis is generally ex-

pected to be higher for more recent periods, implying

that trends beginning in the mid-twentieth century or

later are expected to be less prone to spurious trend

components caused by data inhomogeneities than are

trends beginning in 1901. In that regard, a number of

previous precipitation change studies have focused on

trends over the second half of the twentieth century. Our

zonal mean trend results (cf. Figs. 9a and 9b) indicate

that the apparent dry trend bias of the models is more

pronounced for the (less reliable) 1901–2010 trends than

for the 1951–2010 trends. Using a completely in-

dependent data source, Milly et al. (2005) found only a

slight tendency (not statistically significant) for observed

twentieth-century trends in a related variable (runoff) to

be larger than simulated in CMIP3 historical runs.

Becker et al. (2013) discuss the issue of potential in-

homogeneities and their impact on trend analysis for the

GPCC dataset. They note that stations with ‘‘obvious

jumps’’ in their precipitation records were removed

from the dataset at a preliminary stage. They also

foresee a future version of their dataset based on a more

complete assessment and adjustment for inhomoge-

neities; such as dataset is under development but not

available at this writing. The current GPCC dataset in-

cludes information on the number of stations available

at each grid point andmonth.We use this information to

screen out gridpoint anomalies (from both observations

and models) where the number of available stations for

observations is zero. The temporal homogeneity of time

series at individual grid points will be affected by a

varying number of stations over time used to compute

anomalies for a given grid box. We have not attempted

to assess or adjust the GPCC or CRU dataset time series

for discontinuities or changepoints. In the course of our

analyses we have noted some aggregate time series

metrics that display possible indications of inhomoge-

neity effects. An example of this is shown in the sup-

plemental material (Fig. S10c), where we document in

the GPCC dataset a relatively abrupt shift around 1920

in the time series of percent of analyzed global area

having SPI values of less than 22. Whether this feature

is real or an artifact remains to be determined.

We conclude that although inhomogeneities in ob-

servedprecipitationdatamayplay a role in theobservation–

model discrepancies in century-scale trends, there is

sufficient evidence, based on our preliminary cross-

dataset comparisons and the spatial coherence of the

trend assessments across large regions, to tentatively

suggest that the identified trend bias is real and not

simply an artifact of data homogeneity problems.

Taking into account the above caveats, as well as the

results shown that lend support to the notion of a dry

extratropical trend bias since 1901 in the CMIP5

models, we conclude that our finding is, at this stage, a

tentative result that merits further investigation—in

particular, to determine whether or not it is robust to

data quality issues.
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5. Discussion and conclusions

As discussed in the previous section, a tentative result

from our analysis is that CMIP5 historical all-forcing

runs have a dry bias in century-scale (1901–2010) pre-

cipitation trends compared to observations, particularly

over extratropical land regions having adequate obser-

vational coverage. Despite this tentative finding, mod-

eled and observed trends (1901–2010) were assessed as

statistically consistent for 58% of the analyzed area in

the GPCC data. We found detectable and attributable

trends over 29% of the area; for 20% (9%) of the ana-

lyzed area, a detectable increase (decrease) was attrib-

utable in part to anthropogenic forcing, according to the

models. Similar results were obtained for observed

trends based on the CRU precipitation data. Notable

examples of areas with attributable anthropogenic in-

creasing trends include northern extratropical land re-

gions and parts of southern South America.

As noted in Knutson et al. (2013), century-scale ob-

served temperature trends (e.g., 1901–2010) have a much

more uniform spatial structure than those for the shorter

period (1981–2010) and closely resemble the CMIP3 and

CMIP5 all-forcing historical run ensemble trend pattern

for 1901–2010. This suggests that the 1901–2010 temper-

ature trends may represent the best currently available

estimate of the pattern of response to greenhouse gas

forcing, since shorter-term trends, such as over 1951–2010

or 1981–2010, have more complicated patterns that may

reflect more of a mixture of signals, including internal

climate variability, along with responses to volcanic and

non–greenhouse gas forcing changes. Similarly by anal-

ogy, we speculate that the observed precipitation trends

since 1901 (Fig. 2) may provide the best available esti-

mate of the likely pattern of response of mean pre-

cipitation to greenhouse gas increases.

Some of the geographic areas identified as having at-

tributable anthropogenic increases or decreases in pre-

cipitation are generally consistent with previous studies

(e.g., Held et al. 2005; Min et al. 2008; Hoerling et al.

2012; Delworth and Zeng 2014; Wan et al. 2015; Zhang

et al. 2016). The attribution of precipitation increases to

anthropogenic forcing, as inferred here over some regions

of the central and northern United States, southern

Canada, and parts of Eurasia and northern Australia, has

not been previously reported to our knowledge. We view

more cautiously the possible anthropogenic decreases in

precipitation inferred over relatively small regions, such

as parts of the Maritime Continent, Japan, and the

southwestern United States, and we would consider these

finding more tentative than those covering larger regions.

A notable shortcoming in the multimodel ensemble

simulations for the period 1951–2010 is their failure to

adequately simulate the observed detectable drying

trend over this period in the Sahel region (Fig. 3). This

feature is related to the observed pronounced decline in

Sahel precipitation from the 1950s to 1980s associated

with the Sahel drought, which can be reasonably well

simulated in at least some climate models (Held et al.

2005). Nonetheless, the cause of the Sahel drought re-

mains uncertain: a number of studies have emphasized

an important role for natural variability such as the

Atlantic multidecadal variability in causing the ob-

served 1950s to 1980s precipitation decline (e.g.,

Hoerling et al. 2006; Ting et al. 2009, 2011; Mohino et al.

2011), while other studies point to a possible role for

anthropogenic aerosol forcing (Rotstayn and Lohmann

2002; Ackerley et al. 2011) or various combinations of

natural and anthropogenic forcings (including green-

house gases and aerosols) (Held et al. 2005). In addition,

some models can simulate the observed precipitation

changes in response to SST forcing (Lu and Delworth

2005; Hoerling et al. 2006), although this does not

identify the underlying cause for the drought. Some

further relevant modeling issues in this region include

the difficulties in simulating important aspects of the

African monsoon circulation with climate models (e.g.,

Cook and Vizy 2006), and the widely varying modeled

responses of Sahel-region precipitation to uniform SST

warming depending on the convective parameterization

used in amodel (Hill et al. 2017). Given these substantial

challenges, it may not be surprising that models have

difficulties simulating the observed multidecadal pre-

cipitation trends in the region. While model-observed

discrepancies related to the Sahel drought identified in

the present study for CMIP5 all-forcing runs are signif-

icant for 1951–2010 trends, there is much less evidence

for a significant discrepancy in this region if one con-

siders instead trends over 1901–2010 or 1981–2010. For

example, a century-scale decline, as in observations, is

simulated in summertime Sahel rainfall in most CMIP5

model all-forcing runs (Biasutti 2013). Dong and Sutton

(2015) conclude that the recent (since the 1980s) partial

recovery of Sahel rains in observations can be largely

captured by the HadGEM3-A model, primarily as a

response to increasing greenhouse gas concentrations.

While our analysis can identify inconsistencies be-

tween observed and modeled trends, it cannot de-

termine their causes. Potential causes can include 1)

errors in observed trends due to data quality/homoge-

neity issues (discussed in section 4), 2) errors in specified

historical forcings, 3) errors in the model simulated re-

sponse to the specified forcings, and 4) underestimation

of internal variability by the models. The observation–

model discrepancies (in terms of precipitation trend

maps or zonal mean trends) found for 1901–2010 trends
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are not as compelling for trends over more recent pe-

riods (e.g., 1951–2010 or 1981–2010). The zonal mean

trend discrepancies for 1901–2010 are not remedied by

using amore constrained atmosphere-onlymodel forced

by observed SSTs and climate forcing agents. The ob-

served zonal mean trends are shown to be fairly con-

sistent across three observational datasets, suggesting

that observational biases may not be the primary cause

of the model–observation discrepancies.

In viewing the cases where models simulate the wrong

sign of the change compared to observations, (e.g., in

Figs. 3 and 4, see the orange and green shaded regions for

the 1901–2010 and 1951–2010 trends), it is notable that

these major discrepancies tend to be found in latitudes

between about 308S and 408N, whereas at higher latitudes

the models and observations tend to be in better agree-

ment at least on the sign of change. The lower-latitude

trend simulation problems could be a reflection of the

greater difficulty at simulating precipitation responses to

forcing in general at lower latitudes as noted by Stevens

and Bony (2013). They posit that simulating the coupling

between moist processes and circulation, and therefore

regional changes, is especially challenging in lower lati-

tudes where these processes are particularly dependent

on unresolved, parameterized moist convection and

cloud formation. In any case, further work will be needed

to better understand the relative contributions of various

factors to the model–observation trend discrepancies.

The tendency for models to underpredict the observed

precipitation increases in the extratropical latitudes since

1901 and the relatively small area with detectable de-

creasing trends compared to increasing trends in obser-

vations are particularly important tentative findings with

possible implications for twenty-first-century projections

of drought and flood occurrence from theCMIP5models.

If a similar tendency for a low precipitation trend bias

applies also in future model projections in these regions,

the CMIP5 models might be expected to overestimate

future drought risk, while underestimating future flood

risk, all other factors assumed equal, at least over the

regions covered by our analysis for 1901–2010. Such a

model bias could also affect emergence time estimates for

detectable trends (e.g., Mahlstein et al. 2012). Given the

potential importance of future drought and flood changes

for climate impacts, our tentative findings emphasize the

need to better understand whether the (larger than

modeled) observed precipitation trends since 1901 rep-

resent actual climate changes or data quality artifacts, and

to conduct further assessments comparing modeled and

observed precipitation trends.
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APPENDIX

Further Methodology Details

a. CMIP5 models used

The following are 10 CMIP5 models that were used

for the main climate change assessment figures in the

study. Listed are the model names, with the number of

all-forcing ensemble members, natural-forcing ensem-

ble members, and control run length (in years) used

listed in parentheses for eachmodel: BCC-CSM1.1 (3; 1;

500), CanESM2 (5; 5; 995), CNRM-CM5 (10; 6; 850),

CSIRO-Mk3.6.0 (10; 5; 500), IPSL-CM5A-LR (6; 3;

1000), IPSL-CM5A-MR (3; 3; 300), HadGEM2-ES (4; 4;

576), GISS-E2-H (6; 5; 540), GISS-E2-R (6; 5; 525), and

NorESM1-M (3; 1; 500) (For expansions of model

names, see http://www.ametsoc.org/PubsAcronymList.)

The 36 CMIP5 models used for the zonal average

trend plots (all-forcing runs) and in the external forcing-

only assessments in supplemental material are listed

here, along with the number of all-forcing ensemble

members and control run length used (in years) for each

model: BCC-CSM1.1 (3; 500), BNU-ESM (1; 558),

CanESM2 (5; 995), CMCC-CM (1; 330), CMCC-CMS

(1; 500), CNRM-CM5 (10; 850), ACCESS1.0 (2; 500),

ACCESS1.3 (3; 500), CSIRO-Mk3.6.0 (10; 500), FIO-

ESM (3; 800), EC-EARTH (3; 450), INM-CM4 (1; 500),

IPSL-CM5A-LR (6; 1000), IPSL-CM5A-MR (3; 300),

IPSL-CM5B-LR (1; 300), MIROC5 (5; 670), MIROC-

ESM-CHEM (1; 255),MIROC-ESM (3; 630), HadGEM2-

CC (1; 240), HadGEM2-ES (4; 576), MPI-ESM-LR

(3; 1000), MPI-ESM-MR (3; 1000), MRI-CGCM3 (5; 250),

GISS-E2-H-CC (1; 250), GISS-E2-H (6; 540), GISS-E2-R-

CC 1; 250), GISS-E2-R (6; 525), CCSM4 (6; 1050), Nor-

ESM1-ME (1; 250), NorESM1-M (3; 500), HadGEM2-AO

(1; 700), GFDL-CM3 (5; 500), GFDL-ESM2G (1; 500),

GFDL-ESM2M (1; 500), CESM1-BGC (1; 500), and

CESM1-CAM5 (3; 320).

b. Data masking and determining sufficient coverage
for trend calculations

Model data are regridded to the observed grid, and

locations and times where observed data are not

available are set to missing in themodel data fields. The

following procedure, adopted from Hartmann et al.
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(2013), was used to determine if sufficient observa-

tional coverage in time exists for a trend analysis at a

particular grid point: both the first 10% and the last

10% of an observed time series must have at least 20%

data availability, and the entire record must have at

least 70% data availability. The missing data summary

mask developed for annual means analysis was also

applied to the trend results for the individual seasons

(see the supplemental material). A monthly anomaly

was assumed missing for the GPCC data if there were

no stations available in that grid box for that month.

For the CRU data, we used a stricter criterion (re-

quiring four stations to be available), which resulted in

similar degree of available coverage to facilitate com-

parison of trend results between the GPCC and CRU

datasets for our sensitivity analysis.

c. Transformation of precipitation into a
standardized precipitation index

As a sensitivity test for our precipitation trend ana-

lyses, the observed and modeled precipitation monthly

anomalies are transformed into Standardized Pre-

cipitation Index (SPI) anomalies. The SPI is a trans-

formed precipitation metric used for monitoring

meteorological drought (Hayes et al. 1999). Some trend

category results are presented in the supplemental ma-

terial using SPI rather than precipitation. Our im-

plementation of SPI uses a two-parameter gamma

distribution, and we focus on time scales of 3 months for

seasonal and 12 months for annual analysis. Further

computational details are found at http://ccc.atmos.

colostate.edu/pub/spi.pdf, and a sample program for

computing SPI is found at http://drought.unl.edu/

monitoringtools/downloadablespiprogram.aspx. Each

transformed series has an approximately Gaussian dis-

tribution with a standard deviation of unity. Thus the

trend maps have units of (dimensionless) standard de-

viations per unit time as opposed to precipitation rates

per unit time. This procedure has the advantage of

strongly reducing non-Gaussian characteristics of the

time series, which can confound statistical tests.

Further, the normalization to unit standard deviation

of both observed and modeled time series prevents

differences in simulated and observed variance from

influencing the trend assessments. Along similar

lines, Noake et al. (2012) found that discrepancies

between observed and simulated precipitation trends

were smaller when comparing percent changes in

climatology, as opposed to absolute changes. SPI was

not computed for the GHCN dataset due to the lack

of an available precipitation climatology for that

dataset.
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